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ABSTRACT 

Prestressed concrete is one of the most important construction materials. It is being used in all sots of 
small to big structures like, railway sleepers, buildings, nuclear reactors, bridges etc. In prestressed 
concrete high tensile strength steel bars are used which are called tendon or prestressing cable. 
Friction between the cable and the duct causes loss of prestressing force which will affect stress 
distribution. For analysis purpose cable are modeled by parabola but this approach has two major 
problems. To overcome these, in this study prestressing cable is modeled by B-spline curve.  In a 
computer based analysis, error is caused due to various sources like input data, truncation or 
rounding-off. To minimize errors high precision are employed in computing. But it comes on the cost 
of high computational time. It has been observed, there exist sets of input parameters for which 
errors are irrespective of precision. In this paper Finite Element Analysis (FEA) of one and five span 
prestressed concrete beams are carried out considering single and double precision. Effects of 
Young’s modulus and Poisson’s ratio are studied in terms of errors in stresses and deflections and 
effect of friction has been accounted. Guidelines are suggested to select input parameters for 
minimum errors for single precision Finite Element Analysis. 
 
Keywords: Precision, truncation error, round-off error, finite element analysis, prestressed 
concrete, friction 
 
INTRODUCTION 

Computer uses binary digits to represent 
numbers and process them by using certain 
algorithms. In any numerical analysis such as 
finite element analysis, accuracy of results 
depends upon the number of significant digits 
considered for calculation. Whenever the 
difference of almost equal numbers occur in a 
calculation significant digits are lost and 
incorrect digits, which arise due to rounding 
off errors, are carried in further calculation. 
Loss of significant digits may be partially 
avoided by using double precision numbers. 
Rajasekaran S.(1986), Balaguruswamy E. 
(1988), Aggarwal S.K. (1986),William S. 
Dorn and Daniel D. McCracken (1972), 
Rajaraman V. (1981), Ralph G. Stanton 
(1985), Steven C. Chapra et. al. (1985), 
Gourdin A. et. al. (1996), Antia H. M. (1995), 

John H. Mathews (1994), John R. Rice (1983), 
Richard W. Hamming (1971) explain the 
effect of precision on the results. Suvarna 
Fadnavis (1998) conclude that increase in 
round-off error of finite precision computation 
increases exponentially in iterative 
computations and enters the mainstream 
computation within 50-60 iterations. 
According to Thomas Richard McCalla 
(1967), these may be due to such causes as 
errors in observation, measurement, recording, 
transmission, conversion, mathematical model 
used and in processing. Sushan Kumar (2006) 
reported effect of round off error in numerical 
computation. Yoshida et al (1991), Pearse 
O’Grady et al (1991) discussed errors due to 
truncation and floating point. Miquel Grau et 
al (2006) reported the effect of precision on 
Euler-Chebyshev iterative method. 

International Journal of Theoretical & Applied Sciences, 1(1): 111-119(2009) 



 [112]

In finite element analysis a chain of 
arithmetic operation take place. A very small 
initial error may accumulate in big one at the 
end. Numerical error significantly depends on 
the sensitivities of the input parameters. 
In prestressed concrete there is friction 
between the prestressing tendons and the 
inside of ducts during tensioning. In this study, 
effect of friction and precision with respect to 
Poisson’s ratio and Young’s modulus is 
discussed in terms of errors in stresses and 
deflections for different span prestressed 
concrete beams. 
 
Finite Element Modeling  
Modeling of the prestressing cable for the 
finite element analysis of a prestressed 
concrete structure is a tedious process. To 
represent realistic profile, cable is modeled by 
B-spline. The cable is considered to be 
embedded in the concrete and there exists 
perfect bond between them. For finite element 
modeling cable is modeled by 3 node bar 
element and concrete by 9 node plane stress 
elements (Fig. 1). The shape functions of 3-
node curved bar element is given by-    
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The global co-ordinates inside the curved bar 
element can be defined by- 
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The tangent vector along  axis for the cable is 
calculated using- 
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And the normal vector can be given by- 
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The unit tangent and normal vectors can be 
given by –                
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The curvature at any point on the curve can be 
obtained by (Piskunov,1981) – 
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Numerator of (Eq.6) is a cross product. The 
radius of curvature R is given by 

K
R

1
                                       …(7) 

 
Friction Loss 
The cable tension reduces along the length of 
cable due to friction between the cable and 
duct. The bar element is assumed to have two 
Gauss points GP1 & GP2 (fig. 3). The radius 
of curvature R, obtained above is eq.7 is 
utilized in the calculation of friction loss. 
Assume curvature between 1&2 and 2&3 (fig. 
2) equal to the curvature R1 & R2. Let the 
length of the cable between 1-2 and 2-3 be 
approximated as-   
 
L1-2   ( x1 – x2) 

2 + ( y1 – y2) 
2 

L2-3   ( x2 – x3) 
2 + ( y2 – y3) 

2                       …8) 
 
 
The tension variation in the bar element can be 
expressed by isoparametric interpolation as-  
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If the radius of curvature at GP1 and GP2 be 
R1 and R2 then tension at 2 & 3 after friction 
loss will be- 
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Where,T1 = Tension at jacking end for first 
element. For subsequent elements T1 will 
become T3 of previous element. 
 
1 = L 1-2 / R1 
 2 = L 2-3 / R2 
 = Coefficient of friction 
K = wobble coefficient 
 
In this way cable tension at different locations 
along cable profile can be obtained. 
 
Forces on concrete due to cable 
The cable exerts normal and tangential forces 
on the concrete due to curvature and friction. 
These are expressed as- 
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Where Tn is the tension in the cable and T is 
the tangent vector. 
 
The resultant of these is given by – 
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Where t and n are unit tangent and normal 
vectors (eq.5). 
 
These loads can be transferred to concrete 
nodes, using the principle of virtual work. The 
equivalent nodal force vector for concrete 
element is expressed as- 
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At end elements where cable is anchoraged, 
cable reaction acts as concentrated loads on 
the concrete. The anchorage end point forces 
can be transferred at the nodes in the ratio of 
shape function and are given by- 
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Where, Tend is the cable tension at the end 
points. [N] In Eq.14&15 are the shape 
functions of nine-node element. 
In calculation of Eq.15, local co-ordinates of 
the anchorage points are required for known 
global co-ordinates. This is calculated by 
Newton Raphson iterative method. So, total 
load vector due to cable concrete interaction is 
obtained by- 
 
{P} = {PL} + {PA}                           …(16) 
 
This nodal load vector is applied on the 
structure along with live and dead load vectors 
to include prestressing effects. 
  
Computation of Local Co-ordinates (,) 
In above calculation local co-ordinates of 
known global co-ordinates are required. It is 
an inverse non-linear problem, which is solved 
iteratively by Newton-Raphson method as 
follows. Let (x, y) is the global co-ordinate 
and (,) be corresponding local co-ordinate 
then- 
 














































 ii

ii

ii
yy

xx

yy

xx

1

1
1

1
//

//








      …(17) 

 
in above equation inverse matrix is nothing 
but Jacobian matrix. (xi+1,yi+1) is the computed 
value and (xi, yi) are the known value. Initial 
values of (,) are taken as zero. The 
computation is carried out iteratively till the 
difference of two consecutive value of (,) 
becomes less than tolerance value. In this 
study this is taken as 0.001. 
 
Stiffness Matrix 
It is assumed that after pre-stressing, the cable 
is grouted and it becomes integral part of the 
concrete. The stiffness matrix K is calculated 
as standard formulation (Zienkiwicz 1991, 
Chandrapatla 2004)- 

DBdvBK
T

                         …(18) 
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For nine node element, in local   , co-
ordinate, it becomes- 

  dtdJDBBK T 
 


1

1

1

1

det         …(19) 

Where B is element strain displacement 
matrix, D is material matrix, J is jacobian and t 
is thickness of the object. 
 
Final load displacement matrix is written as  
    PUK                                    … (20) 
 
Based on above formulation, finite element 
software in FORTRAN language, named 
PRCON2D is developed. 
 
Error in Finite Element Computation 
In finite element analysis, while solving the 
equation KU=P, it is important to note that the 
elements of the matrices and the 
computational results can be represented to 
only a fixed number of digits based on 
precision, which introduces errors in the 
solution.  
Consider, that in a specific analysis the 

solution obtained to the equations KU=P isU ; 
i.e., because of truncation and round off errors, 

U is calculated instead of U. it appears that 
the error in the solution can be obtained by 
evaluating a residual ∆P, where 

UKPP                                …(21) 
In practice, ∆P would be calculated using 
double precision arithmetic. Substituting KU 
for P into (eq.21), we get 
 

r = U - U                                        …(22) 

PKr  1
                                   …(23) 

 
Although ∆P may be small, the error in the 
solution may still be large. On the other hand, 
for an accurate solution ∆P must be small. 
Therefore a small residual ∆P is a necessary 
but not a sufficient condition for an accurate 
solution. 
In the solution of KU = P, owing to truncation 
and round off errors, we may assume that we 
in fact solve 
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Assuming that UK is small in relation to 
other terms, we have approximately 
 

KUKU  1                                      …(25) 
Or taking norms, 
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Where cond(K) is the condition number of K, 
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Therefore, a large condition number means 
that solution errors are more likely. To 
evaluate an estimate of the solution errors, 
assume that for a t-digit precision computer, 

t

K

K  10
                                           ...(28) 

Also, assuming s-digit precision in the 
solution, we have 
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Substituting (28) and (29) into (26), we obtain 
as an estimate of the number of accurate digits 
obtained in the solution, 
 

  Kcondts 10log                        …(30) 

 
Numerical Examples 
Two numerical examples are analyzed to 
study the effect of input parameters 
considering single and double precision, on 
the errors. Effect of friction is also studied. 
Following material property are taken into 
account- 
 
(i) Young’s modulus = 2×104, 3×104, 4×104, 

5×104, 6×104, 7×104 N/mm2 
(ii) Poisson’s ratio = 0.00, 0.10, 0.20, 0.30, 

0.40 
(iii)  Wobble coefficient = 1×10-5 
 (iv) Coefficient of friction = 0.2 
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 (i) Single Span Beam  
A single span prestressed concrete beam of 
12m length and 100×200 mm cross section is 
shown in fig. 4. The beam is descretised into 
30 elements and 183 nodes. 2 KN prestressing 
force and 500N point load at center are 
applied to the beam.  
Stress and deflection are calculated by single 
and double precision computations for 
different Poisson’s ratio and young’s modulus. 
Maximum percent errors in stress and 
deflection for a set of Poisson’s ratio and 
young’s modulus are given in table 1. Based 
on these maximum errors contour maps are 
shown in fig. 5 and 6. 
It is observed that in case of double precision, 
stresses are stable and independent of 
Poisson’s ratio and Young’s modulus. Corners 
of contour map at extreme Young’s modulus 
and Poisson’s ratio have minimum errors in 
stress. This error is again minimum for high 
Young’s modulus and is independent of 
Poisson’s ratio.  
Small patches of maximum and minimum 
errors are observed in the contour domain of 
stress and deflection and these patches are 
observed for young’s modulus 5× 104 N/mm2 
and Poisson’s ratio 0.10 to 0.40. Maximum 
errors in stress and deflection are concentrated 
for 2× 104 N/mm2 value of Young’s modulus 
and 0.20 value of Poisson’s ratio.  
 
(iv) Five Span Beam: 
Five span prestressed concrete beam of 
250×500 mm cross section is shown in fig. 7. 
Length of each span of this beam is 8m. The 
beam is descretised into 40 elements and 243 
nodes. 500KN prestressing force and point 
loads of 50 KN and 100 KN are applied at 
alternate mid spans of the beam. Reduced 
prestressing force due to friction at the other 
end is 193 KN. 
Stress and deflection are calculated by single 
and double precision computations for 
different Poisson’s ratio and young’s modulus. 
Maximum percent errors in stress and 
deflection for a set of Poisson’s ratio and 
young’s modulus are given in table 2. Based 
on these maximum errors contour maps are 
shown in fig 8 and 9 . 

It is observe that stresses for single and double 
precision are almost same. Errors in stress are 
minimum for low Poisson’s ratio and 4× 104 
N/mm2 value of Young’s modulus and for 
Young’s modulus = 6× 104 N/mm2 and 
Poisson’s ratio = 0.30 also.  
Errors in stresses are observed maximum for 
low Poisson’s ratio and high Young’s modulus 
and also for Young’s modulus = 6× 104 
N/mm2 and Poisson’s ratio = 0.10. Small patch 
of maximum errors in deflection is observed at 
Young’s modulus 3× 104 N/mm2 . 
 
CONCLUSION 
 
In this study error contour maps for stress and 
deflection are generated using FE analysis of 
one and five span beams. Based on these 
maps, different input parameters for finite 
element analysis using single precision 
computation can be selected for minimum 
error. This will save computational time 
considerably, especially for large size 
structure.   
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Table1.  Error Analysis for one span beam 
Poisson’s Ratio Young’s modulus(N/mm2) Max. %error for stress Max. %error for deflection 

 
0.00 

2×104 14.69 17.39 
3×104 9.00 9.81 
4×104 130.72 166.77 
5×104 4.26 0.63 
6×104 2.0833 1.007 
7×104 3.79 5.86 

 
0.10 

2×104 10.38 9.24 
3×104 142.92 199.37 
4×104 3.7735 4.0268 
5×104 16.51 16.35 
6×104 113.54 128.46 
7×104 24.53 20.82 

 
0.20 

2×104 408.96 250.42 
3×104 4.72 9.81 
4×104 52.08 57.71 
5×104 26.42 38.78 
6×104 2.6041 5.0377 
7×104 54.72 64.52 

 
0.30 

2×104 110.79 196.64 
3×104 110.79 145.28 
4×104 180.30 220.78 
5×104 19.72 10.69 
6×104 20.83 22.41 
7×104 30.05 37.54 

 
0.40 

2×104 19.25 21.01 
3×104 2.1243 1.3381 
4×104 28.64 31.71 
5×104 235.21 287.84 
6×104 31.09 35.64 
7×104 11.26 9.97 

 
Table: 2 Error Analysis for five span beam: 

Poisson’s Ratio Young’s modulus(N/mm2) Max. %error for stress Max. %error for deflection 
 

0.10 
2×104 7.6923 1.8867 
3×104 7.1428 1.8867 
4×104 0.8333 1.005 
5×104 7.1428 0.4807 
6×104 7.6923 0.1883 
7×104 14.28 4.1758 

 
0.20 

2×104 6.25 0.0000 
3×104 10.5231 4.6092 
4×104 1.0752 0.8021 
5×104 5.8823 0.7042 
6×104 5.5555 2.2044 
7×104 10.52 4.2056 

 
0.30 

2×104 5.00 1.0309 
3×104 4.1666 0.4219 
4×104 4.1666 1.4492 
5×104 4.1666 4.83 
6×104 8.3333 6.6523 
7×104 1.0309 2.506 
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Fig.1. 9-node Langerangian element and 3-node curved bar element 
 

 
Fig. 2. Force transfer from cable to concrete 

 

 
Fig. 3. Curved bar element embedded in concrete 

 
Fig.4. One span beam 
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Fig.5. Contour map showing % error in stresses for one span beam 
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Fig.6. Contour map showing % error in deflection for one span beam 
 

     
Fig. 7.  Discretization and node numbering of five span beam 
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Fig.8. Contour map showing % error in stresses for five span beam 
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Fig.9. Contour map showing % error in deflections for five span beam 


